NAS NW276 (UNS N10276)

NAS High Corrosion Resistant Nickel Alloy

NAS NW276 is a Ni-Cr-Mo alloy with excellent corrosion resistance in both oxidizing and reducing atmospheres. In this alloy, carbide precipitation in the heat affected zone (HAZ) is suppressed and corrosion resistance is improved by reducing the contents of C and Si. Based on these features, NAS NW276 is widely used in materials under severe environments such as chemical plants. Nippon Yakin supplies this product in plate, sheet and strip forms.

Grade/Standard

NAS	JIS H4551	ASTM B575	DIN 17744/17750
NAS NW276	NW0276	UNS N10276	2.4819

Chemical Composition

[wt %]

												[,0]
	С	Si	Mn	Р	S	Ni	Cr	Мо	Fe	Co	W	V
Specification (NW0276)	≦0.010	≦0.08	≦1.0	≦0.040	≦0.030	Balance	14.5~ 16.5	15.0~ 17.0	4.0~ 7.0	≦2.5	3.0~ 4.5	≦0.35
Specification (UNS N10276)	≦0.010	≦0.08	≦1.0	≦0.04	≦0.03	Balance	14.5~ 16.5	15.0~ 17.0	4.0~ 7.0	≦2.5	3.0~ 4.5	≦0.35

Physical Properties

Density	[g/cm³]		8.90
Specific heat	[J/kg·K]		400
Electrical resistivity	$[\mu\Omega\cdot cm]$		130.0
Thermal conductivity	[W/m·K]		9.9
Average coefficient of thermal expansion	[10 ⁻⁶ /°C]	20~100°C	12.1
		20~200°C	12.7
		20~300°C	13.0
		20~400°C	13.3
		20~500°C	13.5
Young's modulus	[MPa]		21.1 × 10 ⁴
Magnetism			None
Melting range	[°C]		1325~1369

Mechanical Properties

		0.2% proof stress [MPa]	Tensile strength [MPa]	Elongation [%]	Hardness [HRB]
Sp	ecification (NW0276)	≥275 ≥690 ≥4		≧40	_
Specification (UNS N10276)		≧283	≧690	≧40	≦ 100
Exa	Hot-rolled plate sheet 14mm ^t	372	763	71	83
Example	Cold-rolled sheet 2mm ^t	366	785	61	86

In all cases, solution treated materials

Corrosion Resistance

Pitting Corrosion Resistance

Alloy	ASTM G48	Method A	ASTM G48 Method C		
Alloy	22°C	50°C	Critical pitting corrosion temperature CPT (°C)		
NAS 185N	0	0	70		
NAS 254N	0	0	80		
NAS NW276	0	0	>103		

Test conditions

ASTM G48 Method A (O: No pitting corrosion, x: Pitting corrosion)

ASTM G48 Method C

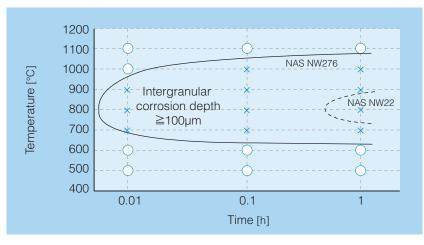
• Test solution: 6%FeCl₃

- Test solution: 6%FeCl₃ + 1%HCl
- Test temperature: 22°C, 50°C (Recommended temperature in this test)
- Test time: 72h

• Test time: 72h

Crevice Corrosion Resistance

Allov	ASTM G48 Method D			
Alloy	Critical crevice corrosion temperature CCT (°C)			
NAS 185N	40			
NAS 254N	45			
NAS NW276	103			


Test conditions

ASTM G48 Method D

• Test solution: 6%FeCl₃ + 1%HCl

• Test time: 72h

Intergranular Corrosion Resistance

Test conditions: ASTM G28 Method A

Test time 24h,

boiling 50%H₂SO₄ - Fe₂ (SO₄)₃ solution

Stress Corrosion Cracking Resistance

	MgCl₂ concentration (boiling point (°C) are in brackets)							
Alloy	45% (155°C)	42% (143°C)	40% (138°C)	38% (134°C)	35% (126°C)	30% (115°C)	25% (110°C)	20% (108°C)
NAS 185N	×	×	×	×	0	0	0	0
NAS 254N	×	×	×	0	0	0	0	0
NAS NW276	0	0	0	0	0	0	0	0

- Test conditions Immersion in boiling MgCl₂ solution
 - Test time: 300h
 - U-bend test specimen is used.
- O: No stress corrosion cracking
- x: Stress corrosion cracking

Acid Resistance

Aller		Corrosion r	ate in sulfu	ric acid at 8	0°C (mm/y)	
Alloy	5%	10%	20%	40%	60%	80%
NAS 185N	0.02	0.04	1.32	2.89	3.20	4.78
NAS 254N	0.02	0.05	1.02	2.11	2.16	7.76
NAS NW276	0.01	0.02	0.03	0.05	0.08	0.03

Test time: 24h

Alloy	Corrosion rate in hydrochloric acid at 80°C (mm/y)					
Alloy	0.1%	1%	2%	3%		
NAS 185N	0.01	0.02	4.20	7.21		
NAS 254N	0.01	0.02	0.01	9.14		
NAS NW276	< 0.01	0.03	0.01	0.23		

Test time: 24h

(Reference)

Nippon Yakin	JIS	UNS No.	Chemical composition
NAS 185N	SUS 312L	S31254	20Cr-18Ni-6Mo-0.8Cu-0.2N
NAS 254N	SUS 836L	S32053	23Cr-25Ni-5.5Mo-0.2N
NAS NW276	NW 0276	N10276	59Ni-15Cr-16Mo-4W-5Fe

Workability

Because the high-temperature strength of NAS NW276 is extremely higher than that of Type 304, care is required when hot working. The cold workability of NAS NW276 is basically the same as that of standard austenitic stainless steels such as Type 304, Type 316, etc. However, the fact that this is a high strength material must be considered in cold working.

Weldability

In welding, it is possible to apply ordinary welding methods in the same manner as with stainless steels. Matching composition welding consumables should be used. Post-weld heat treatment is not required.

Heat Treatment

Solution annealing of NAS NW276 is normally performed at the temperature range from 1150 to 1170°C followed by being quenched in water or rapidly cooled by other means.

Pickling

A mixture of nitric acid and fluoric acid is used in pickling. However, because descaling is somewhat difficult in comparison with Type 304, alkali immersion before acid pickling, and if possible, shot blasting are extremely effective.

Applications

Heat exchangers, centrifugal separators, driers, reaction vessels, salt manufacturing plants, flue gas desulfurization plants

For more information, please contact:

Nippon Yakin Kogyo Co., Ltd. Material Solutions Sales Department San-Ei Bldg., 5-8, 1-chome Kyobashi, Chuo-ku, Tokyo 104-8365 Japan

TEL: +81-3-3273-4649 FAX: +81-3-3273-4642

E-Mail: inquiry@nyk.jp

URL: http://www.nyk.co.jp/en/

Note regarding the handling of property data:

The technical information contained in this product guide is representative values obtained in property tests and other items used to explain the performance of the product. With the exception of items specifically mentioned as provisions of a "Standard," the contents do not represent guaranteed upper limit or lower limit values. The respective data given on this technical information are typical examples and may be different in some cases from the data obtained from the actual product. No responsibility shall, therefore, be assumed for damages arising from using the technical information data. This information is also subject to change in the future without notice. To obtain the most recent information, please contact Nippon Yakin.