NASNW22 (UNS N06022)

High Corrosion Resistant Nickel Alloy

NASNW22 is a Ni-Cr-Mo alloy with excellent corrosion resistance. This alloy provides excellent pitting corrosion resistance, crevice corrosion resistance, and stress corrosion cracking resistance in both oxidizing and reducing environments, and is widely used as a material under severe environments such as flue gas desulfurization plants, papermaking processes, waste treatment processes, etc.

Nippon Yakin supplies this product in plate, sheet and strip forms.

Grade/Standard

Nippon Yakin Grade	JIS G 4902	ASTM B575	DIN 17744/17750
NASNW22	NW6022	UNS N06022	2.4602

Chemical Composition

[wt %]

	С	Si	Mn	Р	S	Ni	Cr	Мо	Fe	Co	W	V
Specification (NW6022)	≦0.015	≦0.08	≦0. 50	≦0,020	≦0,020	Bal.	20.00~ 22.50	12.50~ 14.50	2.00~ 6.00	≦2. 50	2.50~ 3.50	≦0.35
Specification (UNS N06022)	≦0.015	≦0.08	≦0. 50	≦0.02	≦0.02	Bal.	20.0~ 22.5	12.5~ 14.5	2.0~ 6.0	≦2. 5	2.5~ 3.5	≦ 0.35

Physical Properties

Density	[g/cm³]		8.70
Specific heat	[J/kg · K]		414
Electrical resistivity	$[\mu\Omega\cdot cm]$		114.0
Thermal conductivity	[W/m·K]		10.0
Average coefficient of thermal expansion	[10 ⁻⁶ /°C]	20~100°C	11.5
		20~200°C	12.7
		20~300°C	13.0
		20~400°C	13.5
		20~500°C	13.8
Young's modulus	[MPa]		20.4 × 10 ⁴
Magnetism			None
Melting range	[°C]		1325~1372

Mechanical Properties

			0.2% proof stress [MPa]	Tensile strength [MPa]	Elongation [%]	Hardness [HRBW]
Specification (NW6022)			≧310	≧310 ≧690 ≧45		_
Specification (UNS N06022)			≧310	≧690	≧45	-
Exa	Hot-rolled plate	12mm ^t	367	744	73	84
Example	Cold-rolled sheet	3mm ^t	383	782	57	86

Corrosion Resistance

Pitting Corrosion Resistance

	ASTM G48	Method A	ASTM G48 Method C		
Alloy	22°C	50°C	Critical pitting corrosion temperature CPT (°C)		
NAS185N	0	0	70		
NAS254N	0	0	80		
NASNW22	0	0	>103		

Test conditions

ASTM G48 Method A (O: No pitting corrosion, x: Pitting corrosion)

• Test solution: 6%FeCl₃

• Test temperature: 22°C, 50°C (Recommended temperature in this test)

• Test time: 72h

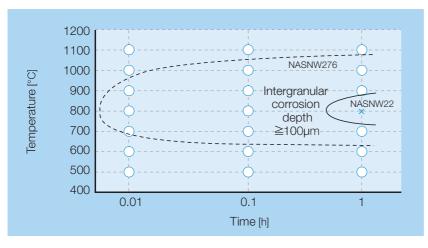
ASTM G48 Method C

• Test solution: 6%FeCl₃ + 1%HCl

• Test time: 72h

Crevice Corrosion Resistance

	ASTM G48 Method D				
Alloy	Critical crevice corrosion temperature CCT (°C)				
NAS185N	40				
NAS254N	45				
NASNW22	>103				


Test conditions

ASTM G48 Method D

• Test solution: 6%FeCl₃ + 1%HCl

• Test time: 72h

Intergranular Corrosion Resistance

Test conditions: ASTM G28 Method A Test time 24h, boiling 50%H₂SO₄ - Fe₂ (SO4)₃ solution

Stress Corrosion Cracking Resistance

	MgCl₂ concentration (boiling point (°C) are in brackets)								
Alloy	45% (155°C)	42% (143°C)	40% (138°C)	38% (134°C)	35% (126°C)	30% (115°C)	25% (110°C)	20% (108°C)	
NAS185N	×	×	×	×	0	0	0	0	
NAS254N	×	×	×	\circ	0	0	0	0	
NASNW22	0	0	0	0	0	0	0	0	

- Test conditions Immersion in boiling MgCl₂ solution
 - Test time: 300h
 - U-bend test specimen is used.
- O: No stress corrosion cracking
- ×: Stress corrosion cracking

Acid Resistance

Alley	Corrosion rate in sulfuric acid at 80°C (mm/y)							
Alloy	5%	10%	20%	40%	60%	80%		
NAS185N	0.02	0.04	1.32	2.89	3.20	4.78		
NAS254N	0.02	0.05	1.02	2.11	2.16	7.76		
NASNW22	0.01	0.02	0.02	0.04	0.47	0.34		

Test time: 24h

Alloy	Corrosion rate in hydrochloric acid at 80°C (mm/y)					
7 they	0.1%	1%	2%	3%		
NAS185N	0.01	0.02	4.20	7.21		
NAS254N	0.01	0.02	0.01	9.14		
NASNW22	0.02	0.03	0.02	0.04		

Test time: 24h

(Reference)

Alloy	JIS	UNS No.	Chemical composition
NAS185N	SUS312L	S31254	20Cr-18Ni-6Mo-0.8Cu-0.2N
NAS254N	SUS836L	S32053	23Cr-25Ni-5.5Mo-0.2N
NASNW22	NW6022	N06022	57Ni-21Cr-14Mo-3W-4Fe

Workability

Because the high-temperature strength of NASNW22 is extremely higher than that of Type 304, care is required when hot working. The cold workability of NASNW22 is basically the same as that of standard austenitic stainless steels such as Type 304, Type 316, etc. However, the fact that this is a high strength material must be considered in cold working.

Weldability

In welding, it is possible to apply ordinary welding methods in the same manner as with stainless steels. Matching composition welding consumables should be used. Post-weld heat treatment is not required.

Heat Treatment

Solution annealing of NASNW22 is normally performed at the temperature range from 1150 to 1170°C followed by being quenched in water or rapidly cooled by other means.

Pickling

A mixture of nitric acid and fluoric acid is used in pickling. However, because descaling is somewhat difficult in comparison with Type 304, alkali immersion before acid pickling, and if possible, shot blasting are extremely effective.

Applications

Chemical plants, Pharmaceutical plants, Environment-related equipment, Heat exchangers.

For more information, please contact:

Nippon Yakin Kogyo Co., Ltd. Material Solutions Sales Department San-Ei Bldg., 5-8, 1-chome Kyobashi, Chuo-ku, Tokyo 104-8365 Japan

TEL: +81-3-3273-4649 FAX: +81-3-3273-4642

URL: https://www.nyk.co.jp/en/

Note regarding the handling of property data:

The technical information contained in this product guide is representative values obtained in property tests and other items used to explain the performance of the product. With the exception of items specifically mentioned as provisions of a "Standard," the contents do not represent guaranteed upper limit or lower limit values. The respective data given on this technical information are typical examples and may be different in some cases from the data obtained from the actual product. No responsibility shall, therefore, be assumed for damages arising from using the technical information data. This information is also subject to change in the future without notice. To obtain the most recent information, please contact Nippon Yakin.

No part of this document may be copied or reproduced in any from without the consent of Nippon Yakin.