NAS64 (UNS S32506)

High Corrosion Resistant Duplex Stainless Steel

NAS64 (SUS329J4L, UNS S32506) is an austenitic-ferritic stainless steel which was developed by Nippon Yakin, and provides excellent corrosion resistance against phosphoric acid, acetic acid, various sulfur compounds, etc. In particular, due to its high Cr and Mo composition, its local corrosion resistance is particularly improved in comparison with Type 316L. Nippon Yakin supplies this product in plate, sheet and strip form.

Steel Grade/Standard

Nippon Yakin Grade	JIS G 4304/4305	ASTM A240	EN	
NAS64	SUS329J4L	UNS S32506	_	

Chemical Composition

[wt %]

	С	Si	Mn	Р	S	Ni	Cr	Мо	N	W
Specification (SUS329J4L)	≦0.030	≦ 1.00	≦1.50	≦0.040	≦0.030	5.50~ 7.50	24.00~ 26.00	2.50~ 3.50	0.08~ 0.30	_
Specification (UNS S32506)	≦0.030	≦0.90	≦1.00	≦0.040	≦0.015	5.5~ 7.2	24.0~ 26.0	3.0~ 3.5	0.08~ 0.20	0.05~ 0.30

Physical Properties

Density	[g/cm³]		7.80
Specific heat	[J/kg·K]	25°C	460
Electrical resistivity	$[\mu\Omega\cdot cm]$		82.5
Thermal conductivity	[W/m·K]	25°C	13.0
Average coefficient of thermal expansion	[10 ⁻⁶ /°C]	30~200°C	10.5
		30~300°C	11.4
		30~400°C	12.2
Young's modulus	[MPa]		21.4 × 10 ⁴
Magnetism			Y (magnetizable)
Melting range	[°C]		1420~1462

Mechanical Properties

Mechanical Properties at Room Temperature

		0.2% proof stress [MPa]	Tensile strength [MPa]	Elongation [%]	Hard [HV]	ness [HBW]
Specification (SUS329J4L)		≧450	≧620	≧18	≦320	≦302
Specification (UNS S32506)		≧450	≧620	≧18	-	≦302
Evennele	Cold-rolled sheet 1.6mm ^t	732	853	23	258	248
Example	Hot-rolled plate 10mm ^t	657	800	26	-	252

Corrosion Resistance

NAS64 has excellent local corrosion resistance, including pitting corrosion and stress corrosion cracking resistance, and can be used in environments which Type 316L cannot withstand. In particular, its pitting and crevice corrosion resistance is far superior.

Pitting Corrosion Resistance

A.H	ASTM G48	Method A	ASTM G48 Method C		
Alloy	22°C	50°C	Critical pitting corrosion temperature CPT (°C)		
SUS316L	×		15		
NAS329J3L	0	×	50		
NAS64	0	0	55		

Test conditions ASTM G48 Method A (O: No pitting corrosion, x: Pitting corrosion)

Test solution: 6%FeCl₃
Test solution: 6%FeCl₃

• Test temperature: 22°C, 50°C (Recommended temperature in this test)

• Test time: 72h

ASTM G48 Method C

• Test solution: 6%FeCl₃ + 1%HCl

• Test time: 72h

Crevice Corrosion Resistance

Aller	ASTM G48 Method D		
Alloy	Critical crevice corrosion temperature CCT (°C		
SUS316L	<-10		
NAS329J3L	25		
NAS64	30		

Test conditions ASTM G48 Method D

• Test solution: 6%FeCl₃ + 1%HCl

• Test time: 72h

Stress Corrosion Cracking Resistance

	MgCl₂ concentration (boiling point (°C) are in brackets)							
Alloy	45% (155°C)	42% (143°C)	40% (138°C)	38% (134°C)	35% (126°C)	30% (115°C)	25% (110°C)	20% (108°C)
SUS316L	×	×	×	×	×	×	×	0
NAS329J3L	×	×	×	×	×	×	0	0
NAS64	×	×	×	×	×	×	0	0

- Test conditions Immersion in boiling MgCl₂ solution
 - Test time: 300h
 - U-bend test specimen is used.
- O: No stress corrosion cracking
- x: Stress corrosion cracking

Acid Resistance

A.I	Corrosion rate in sulfuric acid at 80°C (mm/y)							
Alloy	5%	10%	20%	40%	60%	80%		
SUS316L	1.67	4.69	71.91	764.9	704.5	33.74		
NAS329J3L	0.01	0.17	4.65	365.9	1456	106.4		
NAS64	< 0.01	0.02	1.07	191.9	1054	60.72		

Test time: 24h

Aller	Corrosion rate in hydrochloric acid at 80°C (mm/y)						
Alloy	0.1%	1%	2%	3%			
SUS316L	0.02	2.73	6.75	14.88			
NAS329J3L	0.02	0.03	31.10	60.62			
NAS64	0.01	0.01	12.94	30.51			

Test time: 24h

(Reference)

Alloy	JIS	UNS No.	Chemical composition
SUS316L	SUS316L	S31603	17Cr-12Ni-2Mo
NAS329J3L	SUS329J3L	S32205	22Cr-5.3Ni-3.2Mo-0.16N
NAS64	SUS329J4L	S32506	25Cr-6.5Ni-3.3Mo-0.17N

Workability

High temperature strength is similar to Type 430 in the range of 950~1150°C. However the steel shows rapid increase in the strength below 900°C. Regarding cold workability, care is required as proof stress is high and elongation is low in comparison with Type 304.

Weldability

Various welding methods are applicable in the same manner as with the standard austenitic stainless steels, including shielded metal arc welding, TIG welding, and plasma welding. Use of welding electrodes for SUS329J4L is recommended. Preheating and postheating are not necessary. In welding, the interpass temperature should be no more than 100°C in order to prevent formation of intermetallic compounds.

Heat Treatment

Solution annealing of NAS64 should be performed at the temperature range from 1020 to 1120°C followed by being quenched in water or rapidly cooled by other means. (Conditions provided in ASTM A480/A480M)

Pickling

A mixture of nitric acid and fluoric acid is used in pickling. However, because descaling is somewhat difficult in comparison with Type 304, alkali immersion before acid pickling, and if possible, shot blasting are extremely effective.

Applications

Water storage tank, Chemical plants, Environment-related equipment, Geothermal power generation, Papermaking plants, Seawater pump, etc.

For more information, please contact:

Nippon Yakin Kogyo Co., Ltd. Material Solutions Sales Department San-Ei Bldg., 5-8, 1-chome Kyobashi, Chuo-ku, Tokyo 104-8365 Japan

TEL: +81-3-3273-4649 FAX: +81-3-3273-4642

URL: https://www.nyk.co.jp/en/

Note regarding the handling of property data:

The technical information contained in this product guide is representative values obtained in property tests and other items used to explain the performance of the product. With the exception of items specifically mentioned as provisions of a "Standard," the contents do not represent guaranteed upper limit or lower limit values. The respective data given on this technical information are typical examples and may be different in some cases from the data obtained from the actual product. No responsibility shall, therefore, be assumed for damages arising from using the technical information data. This information is also subject to change in the future without notice. To obtain the most recent information, please contact Nippon Yakin.

No part of this document may be copied or reproduced in any from without the consent of Nippon Yakin.